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Abstract-Much work has been done on classification for the past fifteen years to develop adapted 

techniques and robust algorithms. The problem of data correction in presence of simultaneous sources of 

drift, other than sensor drift, should also be investigated, since it is often the case in practical situations. 

The classification systems, however, are not work on the gas sensor domain, where the benefit of correct 

classification of chemical components is also the cost of wrong classification is different for all pairs of 

predicted and actual classes. BPN is a competitive machine learning technique, which has been applied in 

different domains for classification. In this paper BPN have been implemented for Gas Sensor Array 

Drift Dataset. The experimental results show that the BPN classifies the drift dataset with an average 

accuracy of 97% than the other classifiers. The proposed method is compared with C4.5 and SVM. 

Keywords-C4.5, SVM, BPN, Ensembles, Gas sensor array Drift Dataset. 

I. INTRODUCTION 

The past decade has seen a significant increase in the application of multi-sensor arrays to gas classification 
and quantification. The idea to combine an array of sensors with a pattern recognition algorithm to improve the 
selectivity of the single gas sensor has been widely accepted and being used by researchers in this field. In fact, an 
array of different gas sensors is used to generate a unique signature for each gas [1]. A single sensor in the array 
should not be highly specific in its response but should respond to a broad range of compounds, so that different 
patterns are expected to be related to different odors [2]. Different methods have been suggested recently to 
compensate for sensor drift in experiments for gas identification [3]. Chemical sensor arrays combined with read-
out electronics and a properly trained pattern recognition stage are considered to be the candidate instrument to 
detect and recognize odors as gas mixtures and volatiles [4].  

After learning the features of the class, the SVM recognizes unknown samples as a member of a specific 
class.  SVMs  have  been  shown  to perform  especially  well  in  multiple  areas  of  biological analyses;  
especially  functional  class  prediction  from microarray Sensors produced data [5]. 

This paper has been organized into five sections. Section 2, presents the short note about the Dataset used. 
Section 3, describes the approach of Back Propagation Neural Network. Sections 4, experimental results of 
various classification tools are presented. Section 5, conclusions and further research scope are presented. 

II. DATASET 

The Drift Dataset contains 13910 measurements from 16 chemical sensors utilized in simulations for drift 
compensation in a discrimination task of 6 gases at various levels of concentrations. The resulting dataset 
comprises from six distinct pure gaseous substances, namely Ammonia, Acetaldehyde, Acetone, Ethylene, 
Ethanol, and Toluene, each dosed at a wide variety of concentration values ranging from 5 to 1000 ppm [6]. This 
dataset is available in http://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset 

III. BACK PROPAGATION NEURAL NETWORK 

There are different kinds of pattern recognition methods available in the literature. In this paper, Back 
Propagation Neural Network method is adopted and discussed in the subsequent section.  

Apply the input vector to the input units. Let Xp = (xp1, xp2, …,xpN)t is be an input vector.   

Calculate the error terms for hidden units: 
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Notice that the error terms on the hidden units are calculated before the    connection weights to the output-layer 

units have been updated.  

Update weights on the output layer: 
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where η is the learning rate parameter. The order of the weight updates on an individual layer is not important. 

Be sure to calculate the error term 
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since this quantity is the measure of how well the network is learning. When the error is acceptably small for 

each of the training-vector pairs, training can be discontinued [7-12]. The Figure 1 illustrated the Neural 

Network structure of    system.  

The parameter used in the Neural Network are listed below 

 Number of Layers :1 (Input) +10 (Hidden) +1(Output)  

 Data Division :Contiguous Blocks 

 Performance function :Sum squared error 

 Iteration  :18 

 Learning Rule :Levenberg-Marquardt 
 

 

Figure 1.  Neural Network structure 

IV. EXPERIMENTAL RESULTS 

In  this  experiment,  the  features  in  the  training  datasets  are scaled  appropriately  to  lie  between  −1  and  
+1.  The  kernel  band-width  parameter, the  SVM  parameter and BPN parameter were  chosen  using 10-fold  
cross  validation  by  performing  a  grid  search  in  the  range [2−10,  2−9,  .  .  . , 24, 25] and [2−5, 2−4,.  .  . , 29, 210] 
respectively. The performance  of  an  SVM  trained  on  batch  1  and  tested on  batches  2–10.  Note  that  this  
curve  is  estimated  with  the  same SVM  model  used  in  Figure3 but tested on data from batches in-stead of 
months. It is found that the  similar  behaviors  when we  trained  several  SVMs  on  batches  2–5  and  tested  
them  on  successive  batches. These results are again shown in Figure 2,Figure 3,  Figure 4. The  complete set  of  
results,  i.e.,  the  accuracy  of  classifiers  trained  on  batches 1–9  and  tested  on  successive  batches,  is  given  
in  Table 1, Table 2, Table 3 . The  individual  plots  correspond  to  the  performance  of  classifier  trained with  
batch  1  and  tested  on  batches  at  subsequent  time  points  after  applying  the component  correction  method  
for  every  one  of  the  six  reference  gases. In this analysis the BPN classifier achieves the best average accuracy 
of 96.94% rather than the C4.5 and SVM. 
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TABLE I.  CLASSIFICATION ACCURACY OF  THE  C 4.5  CLASSIFIERS  TRAINED  ON  BATCHES  1–9  AND  TESTED  ON  SUCCESSIVE  

BATCHES. 

Batch ID Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Batch 7 Batch 8 Batch 9 Batch 10 

Batch1 82.71 68.41 60.24 35.03 56.04 27.87 32.65 34.26 26.06 

Batch2 
 

81.59 85.09 91.37 28.78 40.57 41.15 54.04 29.75 

Batch3 
  

63.97 45.17 4456 39.46 23.12 52.12 25.02 

Batch4 
   

76.14 21.17 24.68 10.2 23.61 25.77 

Batch5 
    

36.6 13.83 10.2 23.19 16.58 

Batch6 
     

61.25 36.39 17.23 28.8 

Batch7 
      

63.27 56.38 35.52 

Batch8 
       

56.59 36.38 

Batch9 
        

14.75 

TABLE II.  CLASSIFICATION ACCURACY OF  THE  SVM CLASSIFIERS  WITH RBF  KERNEL  FUNCTION TRAINED  ON  BATCHES  1–9  AND  

TESTED  ON  SUCCESSIVE  BATCHES. 

Batch ID Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Batch 7 Batch 8 Batch 9 Batch 10 

Batch1 98.18 98.78 99.28 88.01 98.62 98.96 98.88 98.46 99.4 

Batch2 
 

99.29 99.92 98.29 99.96 99.4 99.38 99.56 99.79 

Batch3 
  

99.38 97.3 99.26 99.79 99.49 99.78 99.85 

Batch4 
   

99.94 99.22 98.89 99.58 99.75 99.94 

Batch5 
    

99.94 99.95 99.75 99.68 99.86 

Batch6 
     

99.59 99.75 99.5 99.81 

Batch7 
      

99.2 99.7 99.76 

Batch8 
       

93.57 93.35 

Batch9 
        

84.3 

TABLE III.  CLASSIFICATION ACCURACY OF  THE  BPN CLASSIFIERS  WITH RBF  KERNEL  FUNCTION TRAINED  ON  BATCHES  1–9  AND  

TESTED  ON  SUCCESSIVE  BATCHES. 

Batch ID Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Batch 7 Batch 8 Batch 9 Batch 10 

Batch1 98.18 98.78 99.28 88.01 98.62 98.96 98.88 98.46 99.4 

Batch2 
 

99.29 99.92 98.29 99.96 99.4 99.38 99.56 99.79 

Batch3 
  

99.38 97.3 99.26 99.79 99.49 99.78 99.85 

Batch4 
   

99.94 99.22 98.89 99.58 99.75 99.94 

Batch5 
    

99.94 99.95 99.75 99.68 99.86 

Batch6 
     

99.59 99.75 99.5 99.81 

Batch7 
      

99.2 99.7 99.76 

Batch8 
       

93.57 93.35 

Batch9 
        

84.3 
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Figure 2.  Classification accuracy of the C 4.5 classifiers 

 

Figure 3.  Classification accuracy of the SVM classifiers with RBF kernel Function 

 

Figure 4.  Classification accuracy of the BPN classifiers with RBF kernel Function 
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V. CONCLUSION 

Gas sensor array drift dataset has been analyzed using C4.5, SVM and the proposed BPN classifiers. Six chemical 
components are used to acquire the drift data set with different time series. In this paper, BPN has been used for 
classification and compared with C4.5 and SVM. The proposed BPN classifier achieves the average accuracy of 
96.94% when compared with other classifiers. This classification of chemical components may be used to train 
the system to detect the Non-communicable diseases from human exhaled breath in future. 
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